Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence.

نویسندگان

  • Karen Harris
  • P K Subudhi
  • Andrew Borrell
  • David Jordan
  • Darrell Rosenow
  • Henry Nguyen
  • Patricia Klein
  • Robert Klein
  • John Mullet
چکیده

Sorghum is an important source of food, feed, and biofuel, especially in the semi-arid tropics because this cereal is well adapted to harsh, drought-prone environments. Post-flowering drought adaptation in sorghum is associated with the stay-green phenotype. Alleles that contribute to this complex trait have been mapped to four major QTL, Stg1-Stg4, using a population derived from BTx642 and RTx7000. Near-isogenic RTx7000 lines containing BTx642 DNA spanning one or more of the four stay-green QTL were constructed. The size and location of BTx642 DNA regions in each RTx7000 NIL were analysed using 62 DNA markers spanning the four stay-green QTL. RTx7000 NILs were identified that contained BTx642 DNA completely or partially spanning Stg1, Stg2, Stg3, or Stg4. NILs were also identified that contained sub-portions of each QTL and various combinations of the four major stay-green QTL. Physiological analysis of four RTx7000 NILs containing only Stg1, Stg2, Stg3, or Stg4 showed that BTx642 alleles in each of these loci could contribute to the stay-green phenotype. RTx7000 NILs containing BTx642 DNA corresponding to Stg2 retained more green leaf area at maturity under terminal drought conditions than RTx7000 or the other RTx7000 NILs. Under post-anthesis water deficit, a trend for delayed onset of leaf senescence compared with RTx7000 was also exhibited by the Stg2, Stg3, and Stg4 NILs, while significantly lower rates of leaf senescence in relation to RTx7000 were displayed by all of the Stg NILs to varying degrees, but particularly by the Stg2 NIL. Greener leaves at anthesis relative to RTx7000, indicated by higher SPAD values, were exhibited by the Stg1 and Stg4 NILs. The RTx7000 NILs created in this study provide the starting point for in-depth analysis of stay-green physiology, interaction among stay-green QTL and map-based cloning of the genes that underlie this trait.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench).

Drought resistance is of enormous importance in crop production. The identification of genetic factors involved in plant response to drought stress provides a strong foundation for improving drought tolerance. Stay-green is a drought resistance trait in sorghum (Sorghum bicolor L. Moench) that gives plants resistance to premature senescence under severe soil moisture stress during the post-flow...

متن کامل

Evaluation of changes in the water relations, osmotic adjustment and stay- green of different genotypes of sorghum under post-flowering drought stress

To investigate the effects of drought stress on the water stress, osmotic adjustment and stay green of sorghum genotypes and their relationship with grain yield, a split-plot on randomized complete block design with three replications was conducted at the experimental field of Seed and Plant Improvement Institute, Karaj, Iran in 2015. The main factor was three treatments: control (irrigation af...

متن کامل

Carbon/Nitrogen Imbalance Associated with Drought-Induced Leaf Senescence in Sorghum bicolor

Drought stress triggers mature leaf senescence, which supports plant survival and remobilization of nutrients; yet leaf senescence also critically decreases post-drought crop yield. Drought generally results in carbon/nitrogen imbalance, which is reflected in the increased carbon:nitrogen (C:N) ratio in mature leaves, and which has been shown to be involved in inducing leaf senescence under nor...

متن کامل

Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake

Stay-green sorghum plants exhibit greener leaves and stems during the grain-filling period under water-limited conditions compared with their senescent counterparts, resulting in increased grain yield, grain mass, and lodging resistance. Stay-green has been mapped to a number of key chromosomal regions, including Stg1, Stg2, Stg3, and Stg4, but the functions of these individual quantitative tra...

متن کامل

Transcriptomic analysis comparing stay-green and senescent Sorghum bicolor lines identifies a role for proline biosynthesis in the stay-green trait.

Sorghum bicolor is an important cereal crop grown on the arid and semi-arid regions of >98 different countries. These regions are such that this crop is often subjected to low water conditions, which can compromise yields. Stay-green sorghum plants are able to retain green leaf area for longer under drought conditions and as such have higher yields than their senescent counterparts. However, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental botany

دوره 58 2  شماره 

صفحات  -

تاریخ انتشار 2007